Chapter 5 Statistical inference: Hypothesis testing
Reading materials: Slides 73 - 91 in STA108_LinearRegression_S20.pdf.
We will continue working on synthetic data in this chapter.
set.seed(1)
n=50;
x=as.matrix(rnorm(n,mean=10,sd=2),ncol=n);
beta.true=c(20,0.15)
Ey= x*beta.true[2]+beta.true[1];
error.terms= rnorm(n)*2; # Normal errors, in order to verify the performance of the t-test
# You can change it to other distributions
y=Ey+error.terms;
5.1 Hypothesit testing
# The lm() and summary() functions will automatically calculate the test statistics and p-values for you
fit.lm<-lm(y~x+1);fit.lm.summary<-summary(fit.lm)
fit.lm.summary
# We will create our own function for calculating the "t value"
source('sources.r') # load the functions we have written
beta.hat=fit.linear.model(covariate=x,outcome=y)
beta.hat.sd=estimate.coef.sd(beta=beta.hat,covariate=x,outcome=y)
# The test statistics for H0: beta1=0, and H0: beta0=0 are
beta.hat.t = (beta.hat-0)/beta.hat.sd;
calculate.t<-function(covariate,outcome){
beta.hat=fit.linear.model(covariate=covariate,outcome=outcome)
beta.hat.sd=estimate.coef.sd(beta=beta.hat,covariate=covariate,outcome=outcome)
beta.hat.t = (beta.hat-0)/beta.hat.sd;
return(beta.hat.t)
}
# The p-values using the Student t distribution are
2*apply(cbind(pt(-abs(beta.hat.t),df=n-2),(1-pt(abs(beta.hat.t),df=n-2))),1,min)
# We can also calculate the p-values using CLT
2*apply(cbind(pnorm(-abs(beta.hat.t)),(1-pnorm(abs(beta.hat.t)))),1,min)
# Or to use the bootstrap
# This part is NOT required
# It is recommended to read more about bootstrap if you want to use it for hypothesis testing
# since the empirical bootstrap procedure is not the most efficient one for this purpose
beta.hat.boot=replicate(1e5,boot.fit(covariate=x,outcome=y));
pval=numeric(length(beta.hat));
for(i in 1:length(beta.hat)){
boot.est=beta.hat.boot[1,i,]
pval[i]=2*min( mean(0<boot.est), mean(0>boot.est) )
}
## Wrap up the above code into one function
calculate.pvalue<-function(covariate,outcome,type){
beta.hat.t=calculate.t(covariate,outcome);
if (type=='t'){
n=length(outcome);
pval=2*apply(cbind(pt(beta.hat.t,df=n-2),(1-pt(beta.hat.t,df=n-2))),1,min);
}else if (type=='z'){
pval=2*apply(cbind(pnorm(-abs(beta.hat.t)),(1-pnorm(abs(beta.hat.t)))),1,min);
}else if (type == 'bootstrap'){
beta.hat=fit.linear.model(covariate=covariate,outcome=outcome)
beta.hat.boot=replicate(1e5,boot.fit(covariate=covariate,outcome=outcome));
pval=numeric(length(beta.hat));
for(i in 1:length(beta.hat)){
boot.est=beta.hat.boot[1,i,]
pval[i]=2*min( mean(0<boot.est), mean(0>boot.est) )
}
}
return(pval)
}
## Write a simulation to verify the equivalence between type I error rate and significance level, under the null H0: beta1=0 (slope is zero)
alpha=0.03; # significance level
simulate.one.instance<-function(x,beta.null,alpha,type){
n=length(x);
Ey= x*beta.null[2]+beta.null[1];
error.terms= rnorm(n)*2;
y=Ey+error.terms;
pval=calculate.pvalue(covariate=x,outcome=y,type=type);
rej.flag= pval[2]<alpha
return(rej.flag)
}
N.sim=1e4;
set.seed(1)
n=50;
x=as.matrix(rnorm(n,mean=10,sd=2),ncol=n);
beta.null=c(beta.true[1],0)
sim.typeI=replicate(N.sim,simulate.one.instance(x,beta.null,alpha,type='t'));
mean(sim.typeI)
## Assess the power
N.sim=1e4;
set.seed(1)
n=50;
x=as.matrix(rnorm(n,mean=10,sd=2),ncol=n);
powers<-numeric(3)
for(a in 1:3){
beta.alt=c(beta.true[1],a/10)
sim.rej=replicate(N.sim,simulate.one.instance(x,beta.alt,alpha,type='t'));
powers[a]<-mean(sim.rej)
}
powers
## Permutation test for testing H0: beta1 = 0 (slope is zero)
permutation.test<-function(covariate,outcome){
n=length(outcome);
sample_indices = sample(1:n,n,replace=FALSE) # sampling without replacement
covariate.perm= covariate[sample_indices]; outcome.perm= outcome;
beta.hat.t=calculate.t(covariate.perm,outcome.perm)
return(beta.hat.t[2])
}
set.seed(1)
n=50;
x=as.matrix(rnorm(n,mean=10,sd=2),ncol=n);
beta.true=c(20,0.15)
Ey= x*beta.true[2]+beta.true[1];
error.terms= rnorm(n)*2; # Normal errors, in order to verify the performance of the t-test
# You can change it to other distributions
y=Ey+error.terms;
beta.hat.t.perm=replicate(1e5,permutation.test(covariate=x,outcome=y));
beta.hat.t=calculate.t(x,y)
2*min( mean(beta.hat.t[2]<beta.hat.t.perm),mean(beta.hat.t[2]>beta.hat.t.perm))
## F-test can be done using the anova() function in R
## It will be left as an exercise for you to write your version of F test
set.seed(1)
n=50;
x=as.matrix(rnorm(n,mean=10,sd=2),ncol=n);
beta.true=c(20,0.15)
Ey= x*beta.true[2]+beta.true[1];
error.terms= rnorm(n)*2; # Normal errors, in order to verify the performance of the t-test
# You can change it to other distributions
y=Ey+error.terms;
full_model=lm(y~x+1);
reduced_model=lm(y~1);
anova(reduced_model,full_model)
summary(lm(y~x+1))
5.2 Multiple testing
# To discuss multiple testing, we generate 1000 outcomes, among which 100 are truly associated with the covariate
set.seed(1)
n=50;m=1000;
x=as.matrix(rnorm(n,mean=10,sd=2),ncol=n);
Y=matrix(0,nrow=n,ncol=m)
beta.true=c(20,0.6)
for(i in 1:m){
Ey= x*beta.true[2]*(i<101)+beta.true[1];
error.terms= rnorm(n)*2;
Y[,i]=Ey+error.terms;
}
# Conduct the same test
pvalues=numeric(m)
for (i in 1:m){
pval=calculate.pvalue(covariate=x,outcome=Y[,i],type='z');
pvalues[i]<-pval[2];
}
## Bonferroni correction
alpha=0.05;
alpha.Bonf=alpha/m; # devided by the number of hypotheses
rej.flag=pvalues<alpha.Bonf;
## True positive
sum(rej.flag & ((1:m)<101))
## False positive
sum(rej.flag & ((1:m)>100))
## True negative
sum(!rej.flag & ((1:m)>100))
## False negative
sum(!rej.flag & ((1:m)<101))
## Benjamini–Hochberg procedure for FDR control
pvalues.sorted<-sort(pvalues,index.return=T)
alpha.BH<- (1:m)*alpha/m;
k.hat<-max(which(pvalues.sorted$x<alpha.BH))
rej.flag.BH=numeric(m);
rej.flag.BH[pvalues.sorted$ix[1:k.hat]]=1;
## True positive
sum(rej.flag.BH & ((1:m)<101))
## False positive
sum(rej.flag.BH & ((1:m)>100))
## True negative
sum(!rej.flag.BH & ((1:m)>100))
## False negative
sum(!rej.flag.BH & ((1:m)<101))
## False positive rate
sum(rej.flag.BH & ((1:m)>100))/sum(rej.flag.BH)
# Run a simulation to verify this